Головна » Файли » Екзамени » Фізика |
31.05.2012, 12:16 | ||||||||||||||||||
Температу́ра (від лат. temperatura — належне змішування, нормальний стан) — фізична величина, яка описує здатність макроскопічної системи (тіла), що знаходиться в стані термодинамічної рівноваги, до передачі тепла іншим тілам. Позначається літерою T або t. На побутовому рівні температура пов'язана із суб'єктивним сприйняттям «тепла» і «холоду». Теплі тіла мають більшу температуру, холодні — меншу. В розумінні сучасної фізики температура пов'язана з тепловим рухом атомів та молекул. Температура відіграє важливу роль у багатьох галузях науки, включаючи фізику, хімію і біологію. ВластивостіВ стані рівноваги температура має однакове значення для всіх макроскопічних частин системи. Якщо в системі два тіла мають однакову температуру, то між ними не відбувається передачі тепла. Якщо існує різниця температур, то тепло переходить від тіла з вищою температурою до тіла з нижчою. На мікроскопічному рівні температура пов'язана із тепловим рухом атомів та молекул, із яких складаються фізичні тіла, а саме — з їх кінетичною енергією.
[ред.]Вимірювання температуриХоча поняття температури інтуїтивно зрозуміле, як стан тепла й холоду, її вимірювання, тобто співставлення з певною одиницею температури й кількісне вираження у вигляді числа, є методологічно складною проблемою. Температуру неможливо виміряти безпосередньо. Проте, при нагріванні або охолодженні тіла змінюються його фізичні властивості: довжина і об'єм, густина, пружні властивості, електропровідність тощо. Основою для вимірювання температури може бути зміна будь-якої властивості будь-якого тіла, якщо для нього відома залежність даної властивості від температури[2]. Вибране для вимірювання температури тіло називають термометричним, а прилад для вимірювання температури - термометром. [ред.]Температурні шкалиДля однозначного визначення температури різними методами й на основі зміни різних властивостей термометричних тіл, термометри необхідно градуювати. Для цього використовуютьсятемпературні шкали. В основі температурних шкал — особливі реперні точки, яким присвоюється певне значення температури. Історично склалися різні температурні шкали, що використовують різні реперні точки, які пов'язані з певними фізичними явищами, що відбуваються при певній температурі. В Міжнародній системі одиниць (СІ) термодинамічна температура входить до складу семи основних одиниць і виражається в кельвінах. До складу похідних величин СІ, які мають спеціальну назву, входить температура Цельсія, яка вимірюється в градусах Цельсія[3]. На практиці часто застосовують градуси Цельсія через історичної прив'язки до важливих характеристик води - температури танення льоду (0 °C) і температури кипіння (100 °C). Це зручно, оскільки більшість кліматичних процесів, процесів у живій природі, тощо пов'язані з цим діапазоном. Зміна температури на один градус Цельсія тотожна зміні температури на один Кельвін. Тому після введення в 1967 році нового визначення Кельвіна, температура кипіння води перестала грати роль незмінної реперної точки і, як показують точні вимірювання, вона вже не дорівнює 100 °C, а близька до 99,975 °C[4].
У Міжнародній системі одиниць (СІ) для вимірювання температури застосовується шкала Кельвіна і символ K (при цьому знак градусу ° відсутній). Широкий вжиток також мають системи Цельсія і Фаренгейта.
Існували також інші системи вимірювання температури, які тепер вийшли з ужитку, такі як ПОДІЛ ЯДЕР УРАНУ. ЯДЕРНИЙ РЕАКТОР. ТЕРМОЯДЕРНІ РЕАКЦІЇ. СЕМІНАР. ПРОБЛЕМИ РОЗВИТКУ ЯДЕРНОЇ ЕНЕРГЕТИКИ В УКРАЇНІ. ЕКОЛОГІЧНІ НАСЛІДКИ
У природних умовах термоядерні реакції синтезу відбуваються в надрах зірок і є основним джерелом їхньої енергії. Для Сонця основною реакцією є перетворення чотирьох протонів на ядро атома Гелію, що супроводжується виділенням енергії понад 26 МеВ за один цикл: Перша термоядерна реакція була здійснена в 1932 році на швидких протонах Ядерну реакцію поділу атомних ядер уперше спостерігали у 1939 р. німецькі вчені О. Ган і Ф. Штрасман. Вони встановили, що під час бомбардування ядер атомів Урану нейтронами вони діляться на дві приблизно однакові частинки (мал. 8.5). Внаслідок кожного такого поділу вивільняється 2—3 нейтрони і близько 200 МеВ енергії. Ф. Жоліо-Кюрі висловив думку, що під впливом потоку вивільнених нейтронів ядерна реакція поділу ядер атомів Урану може розвиватися як ланцюгова. Щоб ланцюгова реакція розвивалася, потрібно підтримувати незмінним потік нейтронів і створити умови для їх проникнення в ядра атомів Урану. З цією метою треба достатню масу Урану вміщувати в обмеженому просторі, створювати так звані критичні умови. Тоді нейтрони потраплятимуть в ядра, викликаючи подальший їх поділ. Мінімальну масу, за якої ланцюгова реакція відбувається самочинно, називають критичною. Здійснення ланцюгової реакції поділу ядер атомів Урану — досить складний процес. Адже повільні нейтрони, що вивільняються в процесі ядерної реакції, можуть викликати поділ лише ядер 23592U; для поділу ядер 23892U потрібні швидкі нейтрони з енергією понад 1 МеВ. Оскільки природний Уран складається з двох нуклонів — 99,3 % Урану-238 і лише 0,7 % Урану-235, то для підтримання ланцюгової ядерної реакції необхідно задовольнити принаймні дві умови: досягти критичної маси і забезпечити достатнє число вивільнених нейтронів для підтримання реакції, яке б не зменшувалося з часом. Трансуранові елементи — це хімічні елементи, розміщені в таблиці Менделєєва за Ураном (Z > 92) Повільні нейтрони не викликають поділу ядра 23892U. Проте їх захоплення цим нуклідом веде до цікавих наслідків — утворення трансуранових елементів. Спочатку виникає короткоживучий радіоактивний нуклід23992U, період піврозпаду якого Т = 23 хв (мал. 8.6), який внаслідок бета-розпаду перетворюється на новий елемент — Нептуній: У свою чергу, нестійкий нуклід нептунію перетворюється на відносно стабільний Плутоній Т = 24 000 років: Ядерну реакцію одержання Плутонію нині широко використовують у сучасних ядерних реакторах-розмножувачах. Людство зробило істотний крок уперед, освоївши ядерну енергію. У 1942 р. під керівництвом Е. Фермі в США було збудовано перший ядерний реактор, в якому ланцюгова реакція поділу ядер атомів Урану стала керованою. Це дало поштовх бурхливому розвитку атомної (ядерної) енергетики. Перший в Європі ядерний реактор було збудовано в 1946 році під керівництвом І. В. Курчатова в Обнінську (Росія) Ядерний реактор складається з: активної зони, де відбувається ядерна реакція, поглиначів нейтронів, захисного кожуха, парогенератора, турбіни та електричного генератора (мал. 8.7). Принцип його дії полягає у використанні вивільненої внаслідок ядерної реакції енергії для здобуття електричної напруги. Щоб ланцюгова реакція була керованою, необхідно регулювати число нейтронів в активній зоні. З цією метою до неї вводять регулювальні стрижні з матеріалу, який добре вбирає нейтрони (Кадмій, Бор). Зміною глибини їх введення регулюють потік нейтронів, а отже, керують перебігом ланцюгової реакції. Енергія, що виділяється в результаті поділу ядер атомів Урану, за допомогою теплоносія передається парогенератору. Вироблена ним водяна пара спрямовується на лопатки парової турбіни, сполученої з генератором, який виробляє електроенергію. Так після кількох перетворень енергія, що вивільняється внаслідок поділу атомних ядер, стає електричною. Електромережами вона потрапляє до споживачів. Потужність ядерного реактора в 1 МВт відповідає ланцюговій реакції, за якої відбувається 3-Ю16 актів поділу ядер Урану за 1 с Ядерні реактори є основою атомних електростанцій (АЕС). Нині у світі налічується понад 1000 ядерних енергетичних установок. Атомна енергетика вважається економічно найвигіднішою і високотехнологічною. Вона використовує останні досягнення науки, сучасні автоматизовані системи керування технологічним процесом на основі ЕОМ, потребує високої кваліфікації працівників. | ||||||||||||||||||
Переглядів: 1580 | Завантажень: 0 | |
Всього коментарів: 0 | |