Головна » Файли » Екзамени » Фізика

Білет №15
31.05.2012, 12:26
15.1 Несамостійний і самостійний розряди у газах. Плазма, її використання.

Електричний струм у газах. Несамостійний і самостійний розряди. Поняття про плазму

За звичайних умов гази майже повністю складаються із нейтральних атомів чи молекул, тому є діелектриками. Для того, щоб газ почав проводити електричний струм, його потрібно забезпечити вільними електричними зарядами. Для цього можна:

1) нагріти газ (З підвищенням температури теплові рухи молекул газу призведуть до втрати електронів молекулами, а отже, й утворення позитивно заряджених іонів. Деякі нейтральні молекули приймуть вільні електрони і стануть негативно зарядженими іонами, крім того, самі вільні електрони зможуть створити струм. Чим вища температура, тим більше вільних електронів.);

2) помістити в газ джерело радіоактивного випромінювання;

3) помістити в газ нагріту металеву нитку, з якої будуть випаровуватись вільні електрони, які і створять струм.

Отже, щоб газ проводив електричний струм, в нього треба помістити іонізатор. Завдяки іонізації в газі утворюються вільні носії електричного заряду - іони та електрони.

Процес проходження електричного струму через газ називають газовим розрядом.

Після припинення дії іонізатора газ перестає бути провідником. Струм припиняється після того, як усі іони й електрони досягнуть електродів. Крім того, під час зближення електрон і позитивно заряджений іон можуть знову втратити нейтральний атом. Такий процес називають рекомбінацією заряджених частинок.

Помістимо в газ два металеві електроди, до яких прикладено напругу U. Тиск газу в трубці бажано знизити. Помістимо в трубці іонізатор, який буде утворювати певне число вільних зарядів за одиницю часу (рис. 4.3.5). Постійно підвищуючи напругу, будемо вимірювати силу струму в колі. Результати нанесемо на графік (рис. 4.3.6).

Значення сили струму в газі буде зростати зі збільшенням прикладеної напруги, згідно із законом Ома для ділянки кола, а коли досягне деякого значення, стане незмінним, що вкаже на стан насиченості в трубці. Це означає, що всі носії, які утворює іонізатор, беруть участь у створенні струму. Якщо дію іонізатора припинити, то припиниться і розряд, оскільки інших джерел іонів немає. Тому такий розряд називають несамостійним.

Будемо і далі продовжувати підвищувати напругу на електродах. За деякої граничної напруги в трубці знову почне зростати сила струму (рис. 4.3.7).

Це означає, що в газі з'являються додаткові іони до тих, що утворилися внаслідок дії іонізатора. Сила струму при цьому може зрости в сотні разів, а число іонів, які виникнуть у процесі розряду, може стати таким великим, що зовнішній іонізатор буде вже непотрібним для підтримання розряду. Якщо забрати зовнішній іонізатор, то розряд не припиниться. Розряд, який може існувати без зовнішнього іонізатора, називають самостійним розрядом.

Причиною різкого збільшення сили струму у разі великих напруг (рис. 4.3.7) є зростання кінетичної енергії електронів, що утворилися внаслідок дії зовнішнього іонізатора. На своєму шляху електрон зіштовхується з іонами і нейтральними атомами. Кінетична енергія електрона перед черговим зіткненням пропорційна напруженості поля і довжині вільного пробігу електрона (шляху між двома послідовними зіткненнями):

.

Якщо кінетична енергія електрона більша за роботу іонізації Ai, яку треба виконати, щоб іонізувати нейтральний атом, тобто

,

то під час зіткнення електрона з атомом відбувається іонізація. Кількість заряджених частинок швидко наростає, виникає електронна лавина. Цей процес називаютьіонізацією електронним ударом. Однак цього замало. Для підтримання такого розряду потрібна емісія електронів з катода. Цьому сприяють швидкі позитивні іони, що утворюються після зіткнення електронів з нейтральними атомами і внаслідок дії електричного поля вдаряються об катод.

Залежно від властивостей і стану газу, а також від якостей і розміщення електродів, прикладеної до них напруги виникають різні види самостійного розряду в газах. Якщо тиск низький, виникає тліючий розряд. За атмосферного тиску можна отримати електричну дугукоронний та іскровий розряди.

Тліючий розряд використовують у газоосвітлювальних лампах. Електрична дуга є потужним джерелом світла і широко використовується в прожекторах, установках для зварювання і різання металів тощо. Прикладом велетенського іскрового розряду є блискавка. Іскровий розряд використовують для запалення суміші палива і повітря у двигунах внутрішнього згоряння, для точної обробки металів тощо.

Коронний розряд, що виникає за атмосферного тиску поблизу загострених ділянок провідника, у разі великого заряду має вигляд корони, що світиться навколо вістря. Його використовують в електричних фільтрах для очищення промислових газів від домішок.

Якщо температури досить високі, розпочинається іонізація газу через зіткнення атомів чи молекул, які швидко рухаються. Речовина переходить в новий стан - плазму.

Плазма - це частково чи повністю іонізований газ, в якому густини позитивних і негативних зарядів майже збігаються. Плазма вважається четвертим станом речовини. У повністю іонізованій плазмі електрично нейтральних атомів немає, тому плазма дуже добре проводить струм. У цілому плазма являє собою електрично нейтральну систему.

Поряд з нагріванням іонізація газу і утворення плазми можуть бути викликані різними способами, наприклад, бомбардуванням атомів газу швидкими зарядженими частинками. При цьому утворюється низькотемпературна плазма.

Через велику рухливість заряджених частинок у плазмі, вони легко переміщуються під дією електричного і магнітного полів, тому будь-які локальні порушення електронейтральності плазми швидко ліквідуються.

На відміну від нейтрального газу, між молекулами якого є короткодіючі сили, між зарядженими частинками плазми діють кулонівські сили, які порівняно повільно зменшуються з відстанню. Кожна частинка взаємодіє одночасно з багатьма навколишніми частинками. Завдяки цьому частинки можуть брати участь не тільки в хаотичному тепловому русі, а і в упорядкованих (колективних) рухах. У плазмі легко збуджуються різні коливання й хвилі.

Провідність плазми підвищується зі зростанням ступеня іонізації. За високої температури повністю іонізована плазма за своєю провідністю наближається до надпровідників.

У стані плазми перебуває близько 90 % речовини Всесвіту (Сонце, зорі, міжзоряний простір).

Плазма оточує нашу планету. Верхній шар атмосфери на висоті 100 - 300 км є іонізованим газом - іоносферою. Полум'я запаленого сірника це також плазма.

Плазма виникає при всіх видах розряду в газах: тліючому, дуговому, іскровому тощо. Таку плазму називають газорозрядною. Її використовують у лазерах.

Струмінь плазми застосовують у магнітогідродинамічних генераторах, плазмотронах. Потужні струмені плазми застосовують для різання і зварювання металів, буріння свердловин, прискорення перебігу хімічних реакцій тощо.

Найбільші перспективи фізики вбачають у застосуванні високотемпературної плазми (T > 108 К) для створення керованих термоядерних реакцій.

15.2 Досліди Резерфорда. Ядерна модель атома. Квантові постулати Бора.

ДОСЛІДИ РЕЗЕРФОРДА. ЯДЕРНА МОДЕЛЬ АТОМА. КВАНТОВІ ПОСТУЛАТИ БОРА. ПОГЛИНАННЯ ТА ВИПРОМІНЮВАННЯ СВІТЛА АТОМОМ


Наприкінці ХIX - на початку XX ст. у фізиці було отримано кілька визначних дослідних фактів, які привернули увагу вчених до мікросвіту. Це відкриття: Х-променів (1895 р., В. К. Рентген, І. Пулюй), названих згодом рентгеніаським випромінюванням, радіоактивності (І896 p., А. Беккерель), електрона (1897 p., Дж. Дж. Томсон). Вони ставили під сумнів Уявлення давніх учених про неподільність атома, суперечили усталеним класичним уявленням про будову речовини, спонукали до поглиблення знань про явища, які відбуваються в мікросвіті. Так зародилася атомна фізика, яка вивчає будову і властивості атомів, процеси на атомному рівні.

Для атомної фізики характерні відстані, сумірні з розміром атома (~10-10 м), та енергія порядку 10-19(Г19 Дж (кілька еВ)

БУДОВА АТОМА. ДОСЛІДИ РЕЗЕРФОРДА

У 1897 р. англійський фізик Дж. Дж. Томсон експериментально відкрив електрон як складову частинку атома, що має найменший електричний заряд. Він припустив, що атом — це позитивно заряджена куля, всередині якої містяться негативно заряджені електрони. Рівномірність їх розподілу в об'ємі кулі та рівність гюзитивного і негативного зарядів забезпечують електричну нейтральність атома.

Модель атома Томсона називавють «пудинговою» — за аналогією з традиційним британський пирогом з родзинками

Проте така модель атома мала свої обмеження і не відповідала дослідним фактам, отриманим на той час фізиками. Запропонувати більш реальну модель атома вдалося лише після дослідів Е. Резерфорда і формулювання квантових постулатів Н. Бором.

Альфа-частинки — це позитивно заряджені частинки, заряд яких дорівнює двом зарядам електрона, а маса приблизно в чотири рази більша за масу атома Гідрогену, тобто це ядра атома Гелію

У 1911 р. англійський фізик Е. Резерфорд, досліджуючи разом зі своїми співробітниками бомбардування альфа-частинками тонких металевих пластинок, встановив, що вони певним чином розсіюються в речовині (мал. 7.1).

30234.jpg

Вузький пучок швидких альфа-частинок  1 спрямовувався на тонку золоту чи платинову пластинку 2, за якою розміщувався екран 3, здатний фіксувати їх попадання на екран спалахами. За допомогою спеціального оптичного пристрою 4 можна була спостерігати і вимірювати кут відхилення ф альфачастинок.

Дослід Е. Резерфорда започаткував основи сучасних уявлень про будову атома

Більшість із них рухалася майже прямолінійно (кут відхилення ф становив 1—2°). Проте незначна їх частка відхилялася на більші кути; були зафіксовані навіть такі альфачастинки, які після розсіювання змінювали свій напрямок руху на протилежний (ф > 90°).

Щоб пояснити одержані результати, Е. Резерфорд припустив, що атом має складну будову, схожу на Сонячну систему: всередині його міститься позитивно заряджене ядро, навколо якого обертаються електрони (мал. 7.2).

05156156.jpg

Його розрахунки довели, що в ядрі зосереджена практично вся маса атома, але його розміри набагато менші за сам атом. Вимірювання показали, що лінійні розміри атома становлять приблизно 10-10 м, а радіус його ядра дорівнює близько 10-15 м. Зрозуміло, що схематичні зображення атомів тут і в інших книгах подаються без дотримання масштабів.

Отже, на підставі одержаних експериментальних даних Е. Резерфорд запропонував ядерну модель атома, яка узгоджувалася з результатами дослідів і пояснювала багато інших явищ, пов'язаних з будовою атома.

Справді, швидкі альфа-частинки легко долають простір електронних оболонок атомів, не зазнаючи з їхнього боку значного впливу, і тому майже не відхиляються від прямолінійної траєкторії руху. Проте коли вони пролітають досить близько від позитивно зарядженого ядра атома, кулонівська взаємодія між ядром і частинками змушує їх викривляти траєкторію і відхилятися на певний кут (мал. 7.3).

30235.jpg

Е. Резерфорд на основі законів електромагнітної взаємодії вивів формулу, яка дає змогу обчислити кількістьа-частинок, розсіяних на кут ф, залежно від їх енергії і хімічної природи досліджуваного матеріалу. Пізніше ця теоретично виведена формула була експериментально підтверджена й остаточно утвердила в фізиці ядерну модель атома.


КВАНТОВІ ПОСТУЛАТИ БОРА
Тріумф класичної фізики в поясненні складної будови мікросвіту, який привів Е. Резерфорда до створення ядерної моделі атома, тривав недовго. За першої ж спроби застосувати закони класичної механіки та електродинаміки до опису найпростішого атома Гідрогену фізики зіткнулися з труднощами, які здавалися нездоланними.

Як відомо, атом Гідрогену є стійким утворенням, яке складається з ядра-протона й одного електрона, що обертається навколо нього під дією кулонівської сили взаємодії (мал. 7.4). Якщо вважати орбіту електрона коловою, то:

3-97.jpg

30236.jpg

З електродинаміки відомо, що електрон, який рухається з прискоренням, має випромінювати електромагнітні хвилі і поступово втрачати енергію, тобто з часом він мав би впасти на ядро, а атом — припинити існування. Отже, за класичними міркуваннями, атоми мають бути нестійкими утвореннями, які весь час випромінюють суцільний спектр електромагнітних хвиль. Проте цей висновок суперечить практиці, адже насправді атоми «живуть» тривалий час і випромінюють енергію лише за певних умов.

Поклавши, що розмір атома r » 10-10 м, швидкість електрона дорівнюватиме v » 106 мс —, а його прискорення а « 1022 мс

Квантові постулати Н. Бора усувають протиріччя між твердженнями класичної теорії і наявним результатом тривалого існування атомів

Це протиріччя між класичною теорією і практикою спробував пояснити у 1913 р. відомий датський учений Нільс Бор, який сформулював квантові постулати:

1) атоми перебувають у певних стаціонарних станах, в яких вони не випромінюють електромагнітні хвилі;

2) під час переходу атома з одного стаціонарного стану, що характеризується енергією Еn, в інший з енергією Еm, він випромінює або поглинає квант енергії, що дорівнює

hv= E- Em.                  (7.2)

Перший постулат Н. Бора, який спростовував фундаментальні положення класичної фізики, був експериментально підтверджений у 1913 р. дослідами Д. Франка і Г. Герца, які досліджували залежність сили струму від напруги у скляній колбі, заповненій парою ртуті (мал. 7.5).

30237.jpg

Досліди Д. Франка і Г. Герца підтверджують, що атоми перебувають у певних стаціонарних станах

Джерело струму Е створює напругу, завдяки якій електрони прямують до анода з прискоренням

Електрони з катода К під дією електричного поля, створеного між електродами джерелом струму Е, прямують до сітки С й анода А. Між сіткою С й анодом А існує незначна напруга (0,5 В), яка гальмує повільні електрони, перешкоджаючи їх руху до анода.

Результати дослідження залежності сили струму / в колі анода від напруги U показали, що ця залежність має нелінійний складний характер (див. мал. 7.6).

30238.jpg

Існування максимумів струму за напруг 4,9; 9,8 і 14,7 В можна пояснити лише однією причиною — існуванням в атомів Меркурію стаціонарних станів. Справді, за напруги U< 4,9 В електрони, що вилетіли з катода, зіткнувшись з атомами Меркурію, практично не змінюють своєї енергії (адже mе < МHg) і легко долають гальмівну напругу між сіткою й анодом. За напруги U = 4,9 В відбувається їх непружне зіткнення й електрони втрачають енергію, збуджуючи атоми Меркурію; їхньої енергії недостатньо для подолання гальмівної напруги і сила струму в колі анода різко спадає. В міру подальшого зростання напруги між катодом К і сіткою С сила анодного струму знову зростає, досягаючи максимуму за 9,8 В, тобто енергія атома Меркурію змінюється на 4,9 еВ.

У дослідах Д. Франка і Г. Герца залежність сили струму від напруги не лінійна: за певної напруги існують максимальні значення струму

Електрон-вольт (еВ) — це енергія, якої набуває електрон під дією прискорювальної напруги 1 В:

1 еВ = 1,6 · 10-19Дж

У збудженому стані атоми можуть перебувати дуже короткий час (~10-8 с), після чого самочинно повертаються в основний незбуджений стан, випромінюючи світловий  квант частотою 3-98.jpg. У дослідах Д. Франка і Г. Герца за напруги 4,9 В спостерігалося ультрафіолетове світіння пари ртуті, що остаточно підтвердило справедливість квантових постулатів Н. Бора.

Лінії атомних спектрів утворюють серії, які підлягають певним закономірностям. Так, для видимої частини спектру Гідрогену спектральні лінії утворюють серію Бальмера

В інфрачервоній частині спектру для значень m = 3 і n = 4, 5, 6, ... виявлено лінії так званої серії Пашена

Другий постулат Бора пояснював закономірності лінійчастих спектрів, природу яких класична фізика не змогла розкрити. У 1885 р. швейцарський учений Й. Бальмер встановив, що довжини хвиль спектральних ліній Гідрогену співвідносяться між собою з певною закономірністю: 3-99.jpg де n = 3, 4, 5, 6; В — стала, що дорівнює 364,56 нм.

Згодом, у 1890 p., шведський фізик Й. Рідберг одержав більш загальну формулу для частот спектральних ліній атома Гідрогену:

3-100.jpg
де R = 3,29 · 1015Гц.

За цією формулою для ліній серії Бальмера m = 2, n = 3, 4, 5, 6; для ліній серії Пашена m = 3, n = 4, 5, 6, ... .

Отже, квантові постулати Бора остаточно розв'язали труднощі класичної фізики щодо будови речовини. Вони пов'язали між собою ядерну модель атома Резерфорда, побудовану на основі класичної теорії, і квантовий характер змін внутрішнього стану атома, що було підтверджено експериментально, їхнє значення для розвитку сучасної фізики з'ясувалося згодом, під час становлення квантової механіки, в основу якої покладено ідею квантування значень фізичних величин.


ОПТИЧНІ СПЕКТРИ. ПОГЛИНАННЯ І ВИПРОМІНЮВАННЯ СВІТЛА АТОМОМ

Електромагнітне випромінювання будь-якої природи може характеризуватися спектром коливань, на які можна розкласти його за довжиною хвилі або частотою. Залежно від характеру поширення електромагнітних хвиль оптичні спектри поділяють на спектри випромінювання, поглинання, розсіювання і відбиття.

Оптичні спектри випромінювання спостерігаються у джерел світла, які випускають фотони внаслідок збудження речовини під впливом зовнішнього чинника. Наприклад, розжарена вольфрамова нитка електричної лампи випромінює світло внаслідок її нагрівання при проходженні по ній електричного струму. Останні три види спектрів спостерігаються в разі проходження випромінювання крізь речовину, внаслідок чого відбувається його поглинання, розсіювання і відбивання залежно від властивостей і довжини хвилі 1-19-1.jpg. або її частоти v.

Оптичні спектри поглинання, розсіювання і відбивання характеризують властивості речовини

Оптичні спектри спостерігають візуально за допомогою спектральних приладів і фіксують, як правило, фотографічним способом або за допомогою фотоелементів. Спектри можуть бути (мал. 7.7):

а) суцільними,  що  охоплюють  широкий діапазон довжин хвиль;
б) лінійчастими, що складаються з окремих спектральних ліній певної довжини хвилі X;
в) смугастими — набір окремих смуг, що належать певному інтервалу довжин хвиль.

30241.jpg

Суцільний оптичний спектр спостерігається за умови термодинамічної рівноваги речовини і випромінювання за даної температури. Проте в реальних умовах досягти такого стану практично неможливо, тому найчастіше одночасно спостерігають різні види спектрів. Так, за звичайних умов сонячне світло бачать у спектроскопі у вигляді суцільного спектра з темними лініями поглинання.

Механізм утворення суцільних оптичних спектрів пояснює класична електродинаміка. За її тлумаченням поглинуте електромагнітне випромінювання збуджує в речовині хвилі, частота яких відповідає частоті падаючого світла.

Проте класична фізика виявилася безпорадною у поясненні лінійчастих і смугастих спектрів випромінювання і поглинання світла атомами і молекулами. їхню природу можна зрозуміти лише на основі квантових постулатів Бора та інтерпретації квантових переходів між рівнями енергії в атомах і молекулах.

За класичною теорією монохроматичне світло збуджуватиме хвилі певної частоти, а природне світло утворюватиме суцільний спектр випромінювання

Для наочного ілюстрування станів атома використовують енергетичні діаграми, на яких рівні енергії позначають горизонтальними лініями (мал. 7.8).

30242.jpg

Доволі довго атом може перебувати лише в основному стаціонарному стані, що характеризується мінімальною енергією Е1. Решта станів атома чи молекули (E2, Е3, ..., Еn) є стаціонарними лише умовно, і тому їх називають збудженими станами. Наприклад, якщо незбуджений атом поглине квант hv, то він може перейти в умовно стабільний, збуджений стан Е3, але згодом, випромінивши квант частотою 3-101.jpgатом може перейти в більш стабільний стан Е2. Слід підкреслити, що випромінювання відбувається за квантового переходу атома зі стану з більшою енергією у стан з меншою енергією, і навпаки, поглинання енергії атомом супроводжується його переходом зі стану з меншою енергією у стан з більшою енергією.
Молекулярні спектри характеризуються сукупністю смуг, за набором яких можна одержати інформацію про склад і структуру молекули, стан її електронних оболонок. Тому їх широко використовують у хімії, спектральному аналізі речовин тощо.

Категорія: Фізика | Додав: salex
Переглядів: 1753 | Завантажень: 0 | Коментарі: 1 | Рейтинг: 0.0/0
Всього коментарів: 1
1 DarkDevil  
0

Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]